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Abstract - Finding, locating, and resolving software defects takes a lot of time and effort. This paper proposes a hybrid 

machine learning model to automate the software testing process. The proposed model combines particle swarm 

optimization (PSO) to optimize artificial neural network (ANN) to overcome the local minima and overfitting problems. The 

proposed model is compared with different classification algorithms such as: Logistic Regression, K nearest neighbours 

(KNN), Decision Tree, Random Forest, Gradient Boosting, AdaBoost, Linear Discriminant Analysis, Quadratic 

Discriminant Analysis, Gaussian NB, Support Vector Machine and deep learning neural networks. The effectiveness of the 

proposed model is evaluated using four different datasets (CM1, KC1, KC2, and PC1). Datasets have been divided into 

training part (70%) and testing part (30%). The proposed model achieved higher accuracy than compared algorithms, while 

also reducing time and space complexities. 
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I. INTRODUCTION 

 

Testing conducted on a software product is called 

software testing. The main objective of testing or 

software testing is to find bugs in the software. Bug is 

an error or fault caused in the behaviour of the 

software program or software application. Software 

testing can be done to check if the software Test 

automation can be of 2 types: 

 

1. Testing with code uses pre-existing interfaces, 

libraries, classes, and modules to test with a large 

number of inputs and check and verify whether 

the results are right. 

2. Testing with a Graphical User Interface (GUI): 

Interface events such as keystrokes and mouse 

clicks can be generated and used by the 

framework to identify changes and test whether 

the program's performance is right or not [1] 

 

Test cases are a set of conditions used by testers to 

determine whether or not the system under test 

operates properly. The creation of test cases aids in 

the discovery of application flaws or needs [2]. 

 

Any software application testing that is automated 

will go through a series of activities, processes, and 

tools to complete the test. The outcomes of these runs 

can be saved and recorded [3]. 

 

Software Testing can be majorly classified into two 

categories: 

 

1. Black Box Testing is a software testing method 

in which the internal structure/ design/ 

implementation of the item being tested is not 

known to the tester. 

2. White Box Testing is a software testing method 

in which the internal structure/ design/ 

implementation of the item being tested is known 

to the tester [4]. 

 

The steps of automated software testing as shown in 

Fig. 1: 

 

1. Software test automation framework configured 

to collect automated test suite and test execution 

results. 

2. A report parser to parse the test execution results 

generated by the software test automation 

framework and configured to identify the failures 

or exceptions with their respective stack trace. 

3. A NoSQL database configured to hold historical 

defect, bug tickets with past failures or 

exceptions. 

4. A ML engine to evaluate matching results of the 

NoSQL database and configured to predict type 

of the failure or exception. 

5. A defect - tracking tool configured to create 

relevant bug tickets based on the type of failure 

or exception. 

6. An automated notification system configured to 

notify the status of a bug ticket. 

7. A dashboard to facilitate the access results, logs, 

failures, key performance indicators etc. in the 

form of histograms, pie graphs etc. 

8. A manual feedback mechanism for adjusting the 

machine learning algorithm and NoSQL database 

table entries.[11] 

 
The process of automating software testing has 

already seen a number of fascinating approaches. The 

software development life cycle [6] includes many 

stages, and machine learning (ML), a subfield of 

artificial intelligence (AI), is frequently utilised in 



International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063 

Volume-12, Issue-1, Jan.-2024, http://iraj.in 

Software Testing Automation Using Machine Learning Techniques 

 

2 

these stages, particularly for automating software 

testing processes [7]. 

 
Figure. 1 Illustrates a method for automated software testing 

based on ML, in accordance to one or more embodiment of the 

present invention [5] 

 

There are one or more AI algorithms that put the 

learning strategy into practise for each ML technique. 

As we previously said, classification issues (for target 

variables with discrete values) and regression 

problems (for target variables with continuous values) 

are solved using supervised learning [8]. Naive 

Bayes, decision trees, support vector machines, 

artificial neural networks (ANN), recurrent neural 

networks (RNN), and convolutional neural networks 

are a few examples of AI algorithms that can be 

employed with this strategy (CNN). RNNs are 

frequently used with sequential data [9], while CNNs 

are frequently used as a solution for large-scale inputs 

[10], such as pictures or sequential data. According to 

Paramshetti and Phalke [12], the ANN technique 

when using NASA datasets has numerous advantages 

over the present methods used to predict software 

problems. SVM can work with both linear and non-

linear dataset values, unlike the Association rule 

method, which only works with linear dataset values. 

SVM with a modified kernel function offers 

improved prediction outcomes. While SVM is 

unaffected by outliers, Thamilselvana and 

Sathiaseelan [13] claim that the AdaBoost algorithm 

is influenced by noisy data and outliers, is not robust 

at identifying software flaws, and has poor modelling 

with linear structure. 

 

1.1 Contributions 

The essential objective of this paper is to display the 

best algorithms that give better accuracy and 

precision and reduce the time complexity by using 

Artificial Neural Network (ANN) including the 

particle swarm algorithm (PSO) and we compare the 

result of ANN-PSO with some of classification 

algorithms such as DT, KNN, ADC, GBC, NB and 

SVM and some algorithms of deep learning such as 

ANN and CNN. Finally, we produce the Proposed 

Model (ANN-PSO) is better with PROMISE dataset 

compared to other models while also reducing time 

and space complexities. 

 

1.2 Research gap 

As automation becomes increasingly critical in the 

software development life cycle, it is imperative to 

evaluate whether these optimization algorithms can 

handle the diverse range of test cases and scenarios 

effectively. Software systems often comprise 

intricateinterdependencies, dynamic data structures, 

and unique user inputs, making it essential to assess 

whether these algorithms can successfully navigate 

through such complexities and deliver accurate 

testing results. 

 

In conclusion, the research gap lies in understanding 

the true potential of improved optimization 

algorithms in addressing the intricacies and 

complexities of software testing automation. By 

identifying the extent of their effectiveness and 

adaptability in this domain, we can bridge the gap 

between theoretical advancements and practical 

implementations, ultimately leading to more robust 

and efficient automated software testing processes. 

 

1.3 Paper organization 

The remainder of the paper is laid out as follows. The 

related work is illustrated in section 2. The 

description of the preliminaries of neural networks 

and Deep learning in section 3. Section 4 describes 

the suggested method used for solving the problem 

(proposed model) with flowchart and Pseudo code. 

The experimental results are shown in section 5. 

Section 6 describes the result and discussion, finally, 

section 7 brings the work to a close and identifies 

areas for potential research. 

 

II. RELATED WORK 

 

Mohd. Mustaqeem and Mohd. Saqib talked about 

how prior studies that used data without feature 

reduction were doomed by dimensionality. We 

employed a hybrid machine learning approach to 

address the issue, combining Principal component 

analysis (PCA) and Support vector machines (SVM) 

[16]. To perform our research, we used PROMISE 

[19] (CM1: 344 observations, KC1: 2109 

observations) data from NASA's directory. The 

dataset was divided into two parts: training (CM1: 240 

observations, KC1: 1476 observations) and testing 

(CM1: 104 observations, KC1: 633 observations) [14, 

17]. The result of the paper is F-measures, Recall, 



International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063 

Volume-12, Issue-1, Jan.-2024, http://iraj.in 

Software Testing Automation Using Machine Learning Techniques 

 

3 

Accuracy, and Precisions are used to calculate test 

outcomes. On the KC1 dataset, we discovered that 

PC-SVM provided accuracy of 85.0 percent. 

Similarly, the accuracy of the CM1 dataset-specific 

model was 90.0 percent. 

Anna Trudova, Michal Dolezel, they purpose the goal 

of this Systematic Literature Review (SLR) is to 

categorise AI approaches and related software testing 

tasks to which they may be used to emphasise the 

significance of AI in software test automation. 

Specifically, the effect of AI on certain activities was 

investigated. The SLR was focused on research 

studies that discussed the usage of AI techniques in 

software test automation for that reason [15]. To 

describe the role of artificial intelligence and its 

techniques in software test automation, the following 

research questions were stated: 

 

What AI techniques can be applied for improving 

testing activities identified during answering the 

RQ1? . 

The data gathered indicates that machine learning 

approaches, particularly various kinds of neural 

networks, tend to be the most often employed AI 

techniques: Bayesian network, artificial neural 

network, recurrent neural network, Q-learning, L*, 

etc. The Bayesian Network and computer vision 

techniques are among those that were applied to 

testing activities more frequently than others. 

 

Dr. Subarna Shakya, Dr. S. Smys, they suggested 

research to improve software testing accuracy and 

dependability and doing research to generate test 

cases utilising a hybrid model of differential 

evolution and ant colony optimization. Traditional 

models like artificial neural networks and particle 

swarm optimization are contrasted with the suggested 

approach to verify its dependability [18, 19-20]. They 

employed three distinct data sets with various 

features to make the experimental procedure more 

challenging [21, 22]. 

 

ID Name Year Method Result Limitations 

1 

Automation of 

software test data 

generation using 

genetic algorithm and 

reinforcement 

learning[24] 

2021 
MAAT 

Algorithm 

MAAT algorithm has a success rate 

of 100%, while none of the other 

algorithms can reach more than 80% 

in this criterion 

It works into test 

data generation 

only 

2 

Reliable Automated 

Software Testing 

Through Hybrid 

Optimization 

Algorithm[19] 

2020 
Hybrid ACO 

Algorithm 

The proposed model hybrid ACO 

model attains accuracy range of rate 

of 96.2%, but particle swarm 

optimization attains an average of 

95.5% and artificial neural network 

obtains an accuracy of 92% which is 

4% lesser than the proposed model 

It works into test 

data generation 

only 

3 

Automated Software 

Test Optimization 

using Language 

Processing[25] 

2019 
TLP based 

framework 

Based on our experiments it is 

concluded that (1) Test execution 

time using TLP based framework is 

significantly low and (2) a test suite 

optimization of 83.78% is achieved 

through the proposed TLP 

framework 

It works into test 

data generation 

only 

4 

Multiple-

Implementation 

Testing of Supervised 

Learning 

Software[26] 

2018 

k-Nearest 

Neighbor 

(kNN) and 

Naive Bayes 

(NB) 

In particular, 19 kNN 

implementations detect 13 real errors 

and 1 potential fault, while 7 NB 

implementations detect 16 real faults. 

Among the three widely used open-

source ML projects, our technique 

can detect 7 true problems and 1 

potential defect 

It works into test 

data generation 

only 

5 

Artificial Intelligence 

in Software Test 

Automation: A 

Systematic Literature 

Review[18] 

2020 

Systematic 

Literature 

Review 

(SLR) 

Most commonly used AI techniques 

appears to be from the field of 

machine learning, specifically 

different types of neural networks: 

Artificial Neural Network, Recurrent 

Neural Network, Bayesian Network; 

Q-learning; L* etc. Bayesian 

Network and techniques from the 

It works into 

survey the AI 

techniques 

without 

experimental 

result 
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Computer Vision field belong among 

the techniques that were used across 

more testing activities more 

frequently than others 

6 

Software Testing 

Using G Genetic 

Algorithm [27] 

2016 

Genetic 

Algorithm 

(GA) 

As a result, Genetic Algorithms are 

being utilized to improve the 

efficiency and processing time of 

Software testing by providing us with 

an automatic test case generator. The 

evolutionary creation of test cases 

can be used, and it has been shown to 

be more efficient and cost effective 

than Random Testing. 

It works into test 

data generation 

only 

7 

Performance analysis 

of six meta-heuristic 

algorithms over 

automated test suite 

generation for path 

coverage-based 

optimization  [28] 

2019 

hill-climbing 

algorithm 

(HCA), 

particle 

swarm 

optimization 

(PSO), 

firefly 

algorithm 

(FA), cuckoo 

search 

algorithm 

(CS), bat 

algorithm 

(BA) and 

artificial bee 

colony 

algorithm 

(ABC) 

ABC, BA and PSO were the better 

optimal test suite generators, while 

CA, HCA and FA produced non-

optimal test suites. On the other 

hand, BA, HCA and ABC were the 

faster algorithms with similar 

processing times for the process 

metrics. FA, PSO and CA were 

among the slower performing 

algorithms. Hence, ABC and BA 

present as suitable algorithms for 

TSG, while PSO can be improved in 

the future for the special case of TSG 

It works into test 

data generation 

and search for 

the bugs and 

errors 

8 

Principal component 

based support vector 

machine (PC-SVM) 

[16] 

2021 

hybrid 

strategy that 

combined 

Principal 

component 

Analysis 

(PCA) and 

Support 

vector 

machines 

(SVM) 

PC-SVM provided accuracy of 86.6 

percent with 86.8% precision, 99.6% 

recall, and 92.8 percent F-measure. 

Similarly, the accuracy of the CM1 

dataset-specific model was 95.2 

percent, with 96.1 percent precision, 

99 percent recall, and 97.5 percent F-

measure 

It works in 

search for the 

bugs and errors 

Table 1. Related works for this study 

 

The accuracy comparison between ANN, PSO and H-

ACO. It is observed that proposed model attains 

better accuracy compared to other models. The 

proposed model hybrid ACO model attains accuracy 

range of rate of 96.2%, but particle swarm 

optimization attains an average of 95.5% and 

artificial neural network obtains an accuracy of 92% 

which is 4% lesser than the proposed model. It is 

observed from the figure, that the proposed model 

attains better sensitivity and specificity values than 

artificial neural network and particle swarm 

optimization model. 

In the past, numerous studies have used a variety of 

techniques to detect software faults, including 

artificial neural networks (ANN), deep learning (DL), 

linear regression, K-nearest neighbours (KNN), 

decision trees, SVM, etc. [23]. According to Gondra, 

[24] a machine learning technique using ANN was 

developed to measure performance for excessive and 

indecisive datasets. To train ANN, historical software 

metric values with multiple errors were provided. To 
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measure performance, sensitivity analysis was carried 

out, and ANN was trained using the training data and 

various evaluation criteria. 

 

Prediction of software problems using one method 

SVM is utilized in many fields to forecast flaws, but 

its accuracy view limits their rate of prediction. 

Techniques such as feature selection and optimization 

are employed to improve accuracy. Optimization is 

carried out using the P-SVM algorithm, a mix of 

Particle Swarm Optimisation (PSO) and the SVM 

algorithm [25].  By clustering text documents using 

the PSO method, a more informative feature selection 

technique with lower dimensions can be obtained 

[25]. Text clustering is a technique that divides text 

into numerous groups, which reduces performance 

and lengthens calculation time. Consequently, a 

hybrid approach using particle swarm optimization 

and genetic operators is applied for the selection of 

more informative features [27]. But there is a 

limitation of using PSO it easily falls into local 

optimization in high-dimensional space it also has a 

low convergence rate in the iterative processing it 

works for large datasets, but our hybrid model PSO-

ANN will work more effective rather than the P-SVM 

hybrid model. 

 

In our paper, we are presenting the novel approach by 

combining the two most promising algorithm for 

optimization and feature selection to obtain better 

results with more accuracy. We are using a hybrid of 

PSO-ANN algorithm whose results and accuracy are 

more than the below-mentioned algorithm in our 

knowledge. 

 

III. PRELIMINARIES 

 

Machine learning is a subfield of artificial 

intelligence that empowers computers to learn and 

improve from experience without explicit 

programming. It involves the development of 

algorithms and statistical models that enable systems 

to recognize patterns and make data-driven decisions. 

One of the core concepts in machine learning is the 

use of neural networks, which are inspired by the 

functioning of the human brain. These networks 

consist of interconnected nodes, or artificial neurons, 

organized into layers. Through the process of 

training, where the model learns from labelled data, 

machine learning algorithms can make predictions, 

classify data, and even solve complex problems 

across various domains, such as image recognition, 

natural language processing, and recommendation 

systems [46]. 

 

Neural networks as in Fig 2 are a fundamental 

component of modern machine learning and artificial 

intelligence. They are computational models inspired 

by the structure and functioning of the human brain's 

neural connections. Each artificial neuron receives 

input data, processes it through an activation 

function, and produces an output that is passed to the 

next layer of neurons. This interconnectedness allows 

neural networks to detect patterns and relationships in 

data that might be challenging for traditional 

algorithms to identify. Neural networks can have 

different architectures, including feedforward, 

recurrent, and convolutional neural networks, each 

suited for specific tasks. The deepening of neural 

networks, known as deep learning, has led to 

significant advancements in various fields, including 

computer vision, speech recognition, and natural 

language understanding [47]. 

 

 
Figure. 2. Neural network model 

 

One of the key advantages of using neural networks 

in software testing automation is their ability to 

handle large and diverse datasets with relative ease. 

By training on vast amounts of historical testing data, 

neural networks can learn patterns and relationships 

that might not be apparent to traditional testing 

approaches. This empowers them to identify and 

predict potential defects or vulnerabilities more 

accurately, enhancing the overall test coverage and 

reducing the risk of critical issues slipping through 

undetected. Furthermore, neural networks can 

significantly speed up the testing process. Their 

inherent parallel processing capabilities enable them 

to execute multiple test cases simultaneously, thus 

accelerating testing cycles and allowing for rapid 

feedback on the software's performance. As a result, 

software development teams can expedite the release 
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cycle without compromising on the quality of the 

product. Neural networks also excel in the realm of 

anomaly detection. By continuously analyzing 

application behavior, they can recognize unusual 

patterns and deviations from expected outcomes. This 

makes them invaluable in scenarios where traditional 

rule-based testing falls short or becomes too 

cumbersome to maintain. The ability to detect outliers 

and potential bugs early on saves considerable time 

and effort for testers, enabling them to focus on more 

critical aspects of the software. However, while 

neural networks bring immense benefits to software 

testing automation, their implementation requires 

careful consideration and expertise. Designing and 

training a neural network tailored to the specific 

testing requirements demands skilled data scientists 

and testing professionals working together. 

Moreover, neural networks are not a silver bullet; 

they should be seen as complementary tools to 

traditional testing methodologies, enhancing their 

effectiveness rather than replacing them entirely. In 

conclusion, neural networks have revolutionized 

software testing automation by providing an 

intelligent, data-driven approach to identify defects, 

speed up testing cycles, and enhance overall test 

coverage. With continued research and 

advancements, the integration of neural networks into 

testing processes will undoubtedly continue to 

evolve, enabling software development teams to 

deliver high-quality products with greater efficiency 

and confidence ss[47].  

 

Deep learning is a subfield of machine learning that 

focuses on training artificial neural networks with 

multiple layers, enabling the models to learn 

hierarchical representations of data. This layered 

architecture allows deep learning models to 

automatically extract and learn intricate features from 

raw input data. Deep learning has revolutionized 

various industries due to its ability to handle large 

amounts of data efficiently and extract meaningful 

insights. Some of the most remarkable achievements 

in deep learning include image and object 

recognition, machine translation, autonomous 

vehicles, and playing complex games like Go. 

However, training deep learning models often 

requires substantial computational resources, which 

has led to the development of specialized hardware 

and distributed computing techniques to accelerate 

the process. Despite the challenges, deep learning 

continues to be at the forefront of cutting-edge AI 

research, and its ongoing advancements promise to 

shape the future of artificial intelligence and the 

technologies we interact with daily [48]. 

 

3.1 Artificial Neural Network (ANN) 

ANN is a computer method with biological roots that 

mimics the behaviour and learning processes of the 

human brain [28]. This method relies purely on the 

historical input-output dataset (example set) to learn 

the relationship between the data through training and 

does not explicitly require knowledge of the physical 

phenomena under inquiry [29]. An amazing 

generalisation capacity, which enables it to properly 

anticipate outputs for a fresh input data set, and the 

ability to deal with noisy data and uncertainties are 

only two of the many benefits that ANN-based 

models offer [30]. 

 

The ANN technique has been widely applied in 

multiple applications in engineering, medicine, 

meteorology, economics, psychology, and many other 

domains because to their many appealing properties 

[31, 32]. As a result, a number of research have 

investigated the use of ANNs to the evaluation of 

sandwich composite panels [33, 34, 35, 36]. 

However, studies that attempt to develop a 

generalised prediction model that can account for the 

influence of each of the honeycomb core's 

geometrical parameters—cell wall thickness (t), cell 

wall angle (), cell wall length (a), and core 

thicknesses (D)—tend to be scarce when it comes to 

honeycomb core sandwich composites. The few 

experiments reported in the literature [33, 34, 35, 36] 

were constrained by the cell geometry modifications 

and the geometrical parameters taken into account. 

 

3.2 Particle Swarm Optimization (PSO) 

PSO is a particularly promising and effective 

optimization technique for solving highly constrained 

nonlinear and non-convex optimization problems 

[38]. The PSO algorithm was first proposed by 

Kennedy and Eberhart [37] and is based on 

cooperative behaviour exhibited by species like fish 

schools and bird flocks. The locations of points (or 

particles) in the design space represent possible 

answers to an optimisation issue. In accordance with 

both its individual optimal position and the optimal 

position of the entire swarm during each generation, 

each particle updates its location [39].PSO offers 

numerous advantages over other optimisation 

approaches, including fewer parameters to tweak than 

many of its rivals, quick calculation times, and the 

ability to mix different techniques to create hybrid 

tools. Additionally, the PSO algorithm's iteration 

phase does not depend on the original solution to 

begin [40, 41]. 

 

The PSO method has been widely employed in many 

engineering applications due to its simplicity of use 

and quick searching speed [39, 41], including 

multiple studies that used PSO in honeycomb 

sandwich composite investigations. However, given 

the effect that each of these parameters has on the 

performance of honeycomb cores, it is surprising that 

these studies did not take into account all of the 

physical parameters of the honeycomb core [core 

thickness (D), cell wall angle (), cell wall thickness 

(t), and the cell wall length (a)] in their optimisation 

problems. 
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The PSO in its original form is defined by: 

 

𝑉𝑖𝑑
𝑡+1 = 𝑤. 𝑣𝑖𝑑

𝑡 + 𝑐1. 𝑟1𝑑
𝑡  𝑃𝑏𝑒𝑠𝑡 ,𝑖

𝑡 − 𝑥𝑖𝑑
𝑡  + 𝑐2. 𝑟2𝑑

𝑡  𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡  (1) 

 

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1, 𝑑 = 1,2, … . . 𝑛(2) 

 

Where: 

 𝑣𝑖𝑑
𝑡 : is the velocity vector of the particle 𝑖 in dimension 𝑑 at time 𝑡. 

 𝑋𝑖𝑑
𝑡+1: is the position vector of the particle 𝑖 in dimension 𝑑 at time 𝑡+1. 

 w∶ is representative of the inertia weight 

 𝑃𝑏𝑒𝑠𝑡 ,𝑖
𝑡 : is the personal best position of the particle 𝑖 in dimension 𝑑 found from initialization through time 𝑡. 

 𝐺𝑏𝑒𝑠𝑡
𝑡 :  is the global best position of the particle 𝑖 in dimension 𝑑 found from initialization through time 𝑡. 

 𝑐1, 𝑐2 : are positive acceleration constants which are used to level the contribution of the cognitive and social 

components respectively; 

 𝑟1𝑑
𝑡 , 𝑟2𝑑

𝑡 : are random numbers from uniform distribution U (0, 1) at time t. 

 

In PSO, the interaction of a group in nature is imitated in the sense that the group members are inclined to move 

toward the best member in the group. Hence, the behavior of each member is formed by the personal and social 

information as shown in Fig 3.  

 

 
Figure. 3. PSO procedure 

 

IV. PROPOSED MODEL (ANN-PSO) 

 

The proposed model in Fig 4 is provide performs a 

binary classification task using a Particle Swarm 

Optimization (PSO) approach to select a subset of 

features from the dataset. Here's an explanation of the 

code step by step: 

 

1. Importing Libraries: The necessary libraries and 

modules are imported, including warnings, 

pandas, tensorflow, scikit-learn (sklearn), seaborn, 

numpy, matplotlib, and keras. 

 

2. Loading and Preprocessing Data:- 

The dataset is loaded from a CSV file using 

pandas, and the first five rows of the dataset are 

displayed. A LabelEncoder is used to encode the 

target variable ('defects') into numeric values and 

create a new column. The 'defects' column is 

dropped from the dataset, and the resulting 

DataFrame is stored in 'df'. The feature matrix 

(data_X) and the target variable (data_y) are 

extracted from 'df'.  The data is split into training 

and testing sets using the train_test_split function 

from sklearn. 

 

3. Setting Random Seeds: Random seeds are set to 

ensure reproducibility of the results. 

 

4. Objective Function Definition: The objective 

function 'f_per_particle' is defined, which takes a 

binary mask 'm'. The function selects a subset of 

features based on the binary mask and performs 

classification using a neural network model. The 

performance of the model is computed using 

accuracy.The objective function value 'j' is 

calculated as a weighted combination of 

classification performance and the number of 

selected features. 

5. Higher-Level Objective Function: The higher-

level objective function 'f' is defined, which takes 

the entire swarm 'x' and an alpha value as inputs. 

The function evaluates the objective function 

'f_per_particle' for each particle in the swarm. The 

negative objective function values are returned. 

 

6. Particle Swarm Optimization (PSO): PSO 

parameters (options) are defined, including 

cognitive and social coefficients (c1 and c2), 

inertia weight (w), maximum velocity (k), and p-

value. The PSO optimizer is initialized with the 

defined parameters and the number of dimensions 

(number of features).  PSO algorithm is executed 

for a specified number of iterations, optimizing 

the objective function 'f'. The best cost and the 
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best position (binary mask) obtained from the 

optimization are returned. 

 

7. Selecting Features and Training the Final Model: 

The selected features for training and testing are 

obtained by applying the best position (binary 

mask) to the training and testing sets. A neural 

network model is defined and compiled using the 

selected features as input. The model is trained on 

the training set for a specified number of epochs. 

Predictions are made on the selected features of 

the testing set. The performance of the model on 

the testing set is computed and printed. 

 

 
Figure. 4. Proposed Methodology flowchart 

 

V. EXPERIMENTAL SETUP 

 

5.1 Dataset Description 

The PROMISE datasets repository was used to 

collect the data [26]. The proposed approach was put 

into practise using the CM1 [42], PC1 [43], KC2 [45] 

and KC1 [44] datasets. We have listed descriptions of 

the various attributes used for analysis in Table 2. 

Additionally, we divided the two datasets into two 

separate portions, one for training the model and the 

other for assessing the results. 240 observations from 

the CM1 data were used to train the model, and 104 

observations were used to test the model. The model 

was trained using 1476 observations, just like in KC1, 

and tested with 633 records and 776 observations 

from the PC1 data were used to train the model, and 

333 observations were used to test the model. 

5.2 Parameter Settings 

Five hundred repetitions qualified the examined and 

tested models. The input sheet for ANN is based on 

No. Since the beneficial procedure was used, there 

were thousands of concealed nodes. It required more 

hidden nodes than conventional algorithms did. The 

2-class was introduced by a single output layer node. 

The Particle Swarm Optimisation technique was 

developed to optimise hyperparameters like (number 

of estimators, max depth, etc.) (the number of 

iterations......... 10 iterations were used) as shown in 

table 3. 

5.3 Evaluation criteria 

We used a confusion matrix to assess the outcomes. 

A simple classification of predicted and actual values 

using the confusion matrix serves as a convincing 

example of the same. After receiving the values, we 
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perform additional calculations, such as model 

correctness, precision, F-score. For each dataset, three 

confusion matrices were produced. A representation 

of actual value and predictions based on testing 

datasets is called a confusion matrix. The confusion 

matrix controls the model's accuracy, and it is also 

possible to calculate some other performance 

parameters (such as recall and precision). 

 

 

Attribute name Description of attribute 

LOC Counts the total number of line in the module 

Iv(g) Design complexity analysis (McCabe) 

Ev(g) McCabe essential complexity 

N Number of operators present in the software module 

v(g) Cyclomatic complexity measurement (McCabe) 

D Measurement difficulty 

B Estimation of effort 

L Program length 

V Volume 

I Intelligence in measurement 

E Measurement effort 

Locomment Line of comments in software module 

Loblank Total number of blank lines in the module 

uniq_op Total number of unique operators 

uniq_opnd Total number of unique operand 

T Time estimator 

Branchcount Total number of branch in the software module 

total_op Total number of operators 

Total_opnd Total number of operators 

Locodeandcomment Total number of line of code and comments 

Defects/Problems 
Information regarding defect whether the defect is 

present or not 

Table 2. Attributes description of PROMISE dataset 

 

Model Parameter Values 

ANN 

Input nodes based on No. Features 

Activation fun for output nodes sigmoid 

Output nodes 1 

No. of Iterations 100 

PSO 

Number of particles 50 

Number of iterations 100 

Dimension Number of features (21) 

α in fitness function 0.88 

β in fitness function 0.01 

Options 
{‗c1‘:0.5, ‗c2‘: 0.5, ‗w‘: 0.9, ‗K‘: 

30, ‗p‘: 2} 

Table 3. Parameters Settings 
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The accuracy of the model can be calculated from the 

following formula. 

 
 

The precision of the model can be calculated using 

the following formula 

 

 
 

Recall of the model calculated using correctly 

predicted positive observations and total numbers of 

positive models in testing datasets. 

 
 

 

Finally, F-measure is computed from the following 

formula. 

 

 
  

Confusion matrix as shown in Fig 5:  

 

 
Figure. 5. Confusion matrix of classification rules 

 

VI. RESULT AND DISCUSSION 

 

In this section, we will present the comparison 

between the classification algorithms and artificial 

neural network and Convolutional Neural Network 

based on the paper in related work with the 

PROMOSE dataset and apply each algorithm on 

dataset (PC1, CM1, KC1) .   

 

After reading the dataset, presumably containing both 

features and the target variable and Create a feature 

matrix (input features) and a target variable array 

(output labels) required for machine learning then 

Split Data into Train and Test Sets  and Apply the 

PSO and return the best position  then select features 

and train final model and Select features based on the 

best position obtained from PSO, define and compile 

a neural network model, train the model using 

selected features, make predictions on the test set, 

compute model performance on the test set and Print 

test performance. 

 

In table 4, 5, 6. After the implementation of the 

Classification models and proposed model, we 

compared our model with previous studies based on 

precision, recall, F-measure, and accuracy of 

classification. We have found that the PSO-ANN is 

more accurate than the other. In KC1 dataset analysis, 

in Fig [6, 7, 8, 9] we have found precision 0.94, recall 

0.90, F-measure 0.95, and accuracy 86.00 that is a 

significant improvement in the analysis in the table 6. 

Same as in CM1 dataset analysis, we have found 

precision 90.0, recall 1.0, F-measure 95.0, and 

accuracy 90.88. In the table 4. Same as in PC1 dataset 

analysis, we have found precision 95.0, recall 1.0, F-

measure 95.0, and accuracy 94.00. In the table 5. The 

accuracy of training data in Fig 10 and test data in Fig 

11. 
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CM1 

Train Dataset Test Dataset 

Acc F1s Pre Rec Acc F1s Pre Rec 

1 LogisticRegression 89.37 0.94 0.91 0.98 89.00 0.95 0.91 0.97 

2 KNeighborsClassifier 89.95 0.95 0.91 0.99 89.67 0.95 0.91 0.97 

3 DecisionTreeClassifier 84.49 0.91 0.92 0.91 82.00 0.90 0.90 0.90 

4 RandomForestClassifier 89.66 0.95 0.90 0.99 89.33 0.94 0.90 0.97 

5 GradientBoostingClassifier 88.22 0.94 0.91 0.96 87.33 0.93 0.90 0.96 

6 AdaBoostClassifier 85.93 0.93 0.90 0.95 86.00 0.92 0.90 0.95 

7 LinearDiscriminantAnalysis 88.23 0.94 0.92 0.95 87.33 0.93 0.90 0.97 

8 QuadraticDiscriminantAnalysis 53.47 0.68 0.90 0.54 89.67 0.95 0.91 0.97 

9 GaussianNB 52.64 0.66 0.94 0.51 86.67 0.93 0.91 0.94 

10 SVC(Linear) 90.23 0.95 0.90 1.00 89.00 0.95 0.90 0.97 

11 SVC(probability = true) 89.95 0.95 0.90 1.00 89.00 0.95 0.90 0.97 

12 SVC(poly) 88.80 0.94 0.91 0.99 89.00 0.95 0.91 0.97 

13 SVC(sigmoid) 89.95 0.95 0.92 0.97 89.00 0.95 0.90 0.97 

14 PC-SVM 89.95 0.95 0.92 0.97 90.00 0.95 0.90 0.97 

15 Proposed Model (PSO-ANN) 98.95 0.98 0.96 0.97 91.00 0.98 0.95 0.99 

 

Table 4.  Classification algorithms and proposed model with CM1 dataset 

 

  

PC1 

Train Dataset Test Dataset 

Acc F1s Pre Rec Acc F1s Pre Rec 

1 LogisticRegression 92.66 0.96 0.94 0.99 92.79 0.96 0.94 0.95 

2 KNeighborsClassifier 92.66 0.96 0.94 0.98 92.39 0.97 0.94 0.97 

3 DecisionTreeClassifier 90.08 0.95 0.95 0.94 90.69 0.95 0.95 0.96 

4 RandomForestClassifier 92.91 0.96 0.93 0.99 92.39 0.97 0.94 0.97 

5 GradientBoostingClassifier 92.40 0.96 0.94 0.98 91.59 0.96 0.95 0.96 

6 AdaBoostClassifier 92.53 0.96 0.94 0.98 92.29 0.97 0.96 0.98 

7 LinearDiscriminantAnalysis 92.14 0.96 0.94 0.98 89.79 0.95 0.94 0.95 

8 QuadraticDiscriminantAnalysis 37.65 0.51 0.94 0.35 92.99 0.97 0.94 0.97 

9 GaussianNB 89.05 0.94 0.95 0.93 83.78 0.91 0.95 0.87 

10 SVC(Linear) 92.78 0.96 0.93 1.00 92.99 0.97 0.94 0.97 

11 SVC (probability = true) 93.30 0.97 0.93 1.00 92.99 0.97 0.94 0.97 

12 SVC (poly) 92.91 0.96 0.94 0.94 92.79 0.96 0.94 0.98 

13 SVC (sigmoid) 90.47 0.95 0.93 0.97 92.29 0.97 0.94 0.97 

14 PC-SVM 89.95 0.95 0.92 0.97 93.00 0.95 0.90 0.95 

15 Proposed Model (PSO-ANN) 97.90 0.98 0.96 0.97 94.00 0.99 0.98 1.00 

 

Table 5.  Classification algorithms with PC1 dataset 

 

 

 

 



International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063 

Volume-12, Issue-1, Jan.-2024, http://iraj.in 

Software Testing Automation Using Machine Learning Techniques 

 

12 

  

KC1 

Train Dataset Test Dataset 

Acc F1s Pre Rec Acc F1s Pre Rec 

1 LogisticRegression 86.86 0.93 0.88 0.98 83.25 0.91 0.85 0.97 

2 KNeighborsClassifier 85.64 0.92 0.89 0.96 81.52 0.90 0.84 0.96 

3 DecisionTreeClassifier 84.01 0.91 0.90 0.91 75.99 0.86 0.85 0.86 

4 RandomForestClassifier 86.58 0.93 0.88 0.98 82.46 0.90 0.84 0.97 

5 GradientBoostingClassifier 87.19 0.93 0.89 0.97 81.67 0.90 0.85 0.94 

6 AdaBoostClassifier 85.84 0.92 0.88 0.97 82.15 0.90 0.85 0.95 

7 LinearDiscriminantAnalysis 86.38 0.92 0.89 0.96 81.36 0.89 0.85 0.94 

8 QuadraticDiscriminantAnalysis 33.14 0.38 0.91 0.24 82.62 0.85 0.85 0.90 

9 GaussianNB 83.20 0.90 0.90 0.91 81.20 0.89 0.87 0.91 

10 SVC(Linear) 86.04 0.92 0.86 0.99 82.78 0.91 0.83 0.99 

11 SVC (probability = true) 86.92 0.93 0.87 0.99 82.62 0.90 0.84 0.97 

12 SVC (poly) 86.59 0.93 0.87 0.99 83.41 0.91 0.85 0.97 

13 SVC (sigmoid) 79.74 0.88 0.88 0.89 78.20 0.87 0.85 0.90 

14 PC-SVM 89.95 0.95 0.92 0.97 84.45 0.86 0.86 0.95 

15 Proposed Model (PSO-ANN) 97.90 0.98 0.96 0.97 86.00 0.95 0.90 0.99 

Table 6.  Classification algorithms with KC1 dataset 

 

 
Figure. 6. Recall for CM1, PC1 and KC1 dataset 

 
Figure. 7F-M for CM1, PC1 and KC1 dataset 
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Accuracy 

 
Figure. 8. Accuracy for CM1, PC1 and KC1 dataset 

 

 

 

 

Precision

 
Figure. 9. Precision for CM1, PC1 and KC1 dataset  

 

 
Figure. 10 accuracies of algorithms with training dataset 
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Figure. 11 accuracies of algorithms with test dataset 

 

 
 

VII. CONCLUSION 

 

The ability to detect faults accurately and early on is a 

key factor in determining a software's quality. 

Software defects can be found early on using a 

variety of methods that researchers and scientists 

have previously devised. The most effective approach 

is machine learning-based due to the classifiers' 

learning mechanisms. We have examined the 

performance of the ANN-PSO model implemented on 

the PROMISE dataset repository by using previously 

developed conventional and traditional methods. 

We select ANN-PSO to overcome the problem of the 

curse of dimensionality and reduce the computational 

requirements of the proposed task. It was the major 

problem with the previous research methodology 

mentioned then after we used PSO-ANN with multi-

layer, which is a very powerful methodology of 

classification in ML. We have found PSO-ANN more 

sustainable in terms of many cases like it can give 

better result with small datasets and doesn‘t affect by 

outliers. 

 

Some improvements on used models will be added by 

using metaheuristic optimization and classification 

algorithms to find the best solution. 
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