
International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

1

SOFTWARE TESTING AUTOMATION USING MACHINE LEARNING

TECHNIQUES

1
MUSTAFA ABDUL SALAM,

2
MOHAMED ABDUL-FATTAH,

3
ABDULLAH MOHAMED

1,2,3Faculty of Computers and Artificial Intelligence, Benha University, Egypt

1Faculty of Computer Studies, Arab Open University, Cairo, Egypt

E-mail: abdalla.mohamed@fci.bu.edu.eg

Abstract - Finding, locating, and resolving software defects takes a lot of time and effort. This paper proposes a hybrid

machine learning model to automate the software testing process. The proposed model combines particle swarm

optimization (PSO) to optimize artificial neural network (ANN) to overcome the local minima and overfitting problems. The

proposed model is compared with different classification algorithms such as: Logistic Regression, K nearest neighbours

(KNN), Decision Tree, Random Forest, Gradient Boosting, AdaBoost, Linear Discriminant Analysis, Quadratic

Discriminant Analysis, Gaussian NB, Support Vector Machine and deep learning neural networks. The effectiveness of the

proposed model is evaluated using four different datasets (CM1, KC1, KC2, and PC1). Datasets have been divided into

training part (70%) and testing part (30%). The proposed model achieved higher accuracy than compared algorithms, while

also reducing time and space complexities.

Keywords - Software testing automation, classification algorithms, deep learning, particle swarm optimization

I. INTRODUCTION

Testing conducted on a software product is called

software testing. The main objective of testing or

software testing is to find bugs in the software. Bug is

an error or fault caused in the behaviour of the

software program or software application. Software

testing can be done to check if the software Test

automation can be of 2 types:

1. Testing with code uses pre-existing interfaces,

libraries, classes, and modules to test with a large

number of inputs and check and verify whether

the results are right.

2. Testing with a Graphical User Interface (GUI):

Interface events such as keystrokes and mouse

clicks can be generated and used by the

framework to identify changes and test whether

the program's performance is right or not [1]

Test cases are a set of conditions used by testers to

determine whether or not the system under test

operates properly. The creation of test cases aids in

the discovery of application flaws or needs [2].

Any software application testing that is automated

will go through a series of activities, processes, and

tools to complete the test. The outcomes of these runs

can be saved and recorded [3].

Software Testing can be majorly classified into two

categories:

1. Black Box Testing is a software testing method

in which the internal structure/ design/

implementation of the item being tested is not

known to the tester.

2. White Box Testing is a software testing method

in which the internal structure/ design/

implementation of the item being tested is known

to the tester [4].

The steps of automated software testing as shown in

Fig. 1:

1. Software test automation framework configured

to collect automated test suite and test execution

results.

2. A report parser to parse the test execution results

generated by the software test automation

framework and configured to identify the failures

or exceptions with their respective stack trace.

3. A NoSQL database configured to hold historical

defect, bug tickets with past failures or

exceptions.

4. A ML engine to evaluate matching results of the

NoSQL database and configured to predict type

of the failure or exception.

5. A defect - tracking tool configured to create

relevant bug tickets based on the type of failure

or exception.

6. An automated notification system configured to

notify the status of a bug ticket.

7. A dashboard to facilitate the access results, logs,

failures, key performance indicators etc. in the

form of histograms, pie graphs etc.

8. A manual feedback mechanism for adjusting the

machine learning algorithm and NoSQL database

table entries.[11]

The process of automating software testing has

already seen a number of fascinating approaches. The

software development life cycle [6] includes many

stages, and machine learning (ML), a subfield of

artificial intelligence (AI), is frequently utilised in

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

2

these stages, particularly for automating software

testing processes [7].

Figure. 1 Illustrates a method for automated software testing

based on ML, in accordance to one or more embodiment of the

present invention [5]

There are one or more AI algorithms that put the

learning strategy into practise for each ML technique.

As we previously said, classification issues (for target

variables with discrete values) and regression

problems (for target variables with continuous values)

are solved using supervised learning [8]. Naive

Bayes, decision trees, support vector machines,

artificial neural networks (ANN), recurrent neural

networks (RNN), and convolutional neural networks

are a few examples of AI algorithms that can be

employed with this strategy (CNN). RNNs are

frequently used with sequential data [9], while CNNs

are frequently used as a solution for large-scale inputs

[10], such as pictures or sequential data. According to

Paramshetti and Phalke [12], the ANN technique

when using NASA datasets has numerous advantages

over the present methods used to predict software

problems. SVM can work with both linear and non-

linear dataset values, unlike the Association rule

method, which only works with linear dataset values.

SVM with a modified kernel function offers

improved prediction outcomes. While SVM is

unaffected by outliers, Thamilselvana and

Sathiaseelan [13] claim that the AdaBoost algorithm

is influenced by noisy data and outliers, is not robust

at identifying software flaws, and has poor modelling

with linear structure.

1.1 Contributions

The essential objective of this paper is to display the

best algorithms that give better accuracy and

precision and reduce the time complexity by using

Artificial Neural Network (ANN) including the

particle swarm algorithm (PSO) and we compare the

result of ANN-PSO with some of classification

algorithms such as DT, KNN, ADC, GBC, NB and

SVM and some algorithms of deep learning such as

ANN and CNN. Finally, we produce the Proposed

Model (ANN-PSO) is better with PROMISE dataset

compared to other models while also reducing time

and space complexities.

1.2 Research gap

As automation becomes increasingly critical in the

software development life cycle, it is imperative to

evaluate whether these optimization algorithms can

handle the diverse range of test cases and scenarios

effectively. Software systems often comprise

intricateinterdependencies, dynamic data structures,

and unique user inputs, making it essential to assess

whether these algorithms can successfully navigate

through such complexities and deliver accurate

testing results.

In conclusion, the research gap lies in understanding

the true potential of improved optimization

algorithms in addressing the intricacies and

complexities of software testing automation. By

identifying the extent of their effectiveness and

adaptability in this domain, we can bridge the gap

between theoretical advancements and practical

implementations, ultimately leading to more robust

and efficient automated software testing processes.

1.3 Paper organization

The remainder of the paper is laid out as follows. The

related work is illustrated in section 2. The

description of the preliminaries of neural networks

and Deep learning in section 3. Section 4 describes

the suggested method used for solving the problem

(proposed model) with flowchart and Pseudo code.

The experimental results are shown in section 5.

Section 6 describes the result and discussion, finally,

section 7 brings the work to a close and identifies

areas for potential research.

II. RELATED WORK

Mohd. Mustaqeem and Mohd. Saqib talked about

how prior studies that used data without feature

reduction were doomed by dimensionality. We

employed a hybrid machine learning approach to

address the issue, combining Principal component

analysis (PCA) and Support vector machines (SVM)

[16]. To perform our research, we used PROMISE

[19] (CM1: 344 observations, KC1: 2109

observations) data from NASA's directory. The

dataset was divided into two parts: training (CM1: 240

observations, KC1: 1476 observations) and testing

(CM1: 104 observations, KC1: 633 observations) [14,

17]. The result of the paper is F-measures, Recall,

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

3

Accuracy, and Precisions are used to calculate test

outcomes. On the KC1 dataset, we discovered that

PC-SVM provided accuracy of 85.0 percent.

Similarly, the accuracy of the CM1 dataset-specific

model was 90.0 percent.

Anna Trudova, Michal Dolezel, they purpose the goal

of this Systematic Literature Review (SLR) is to

categorise AI approaches and related software testing

tasks to which they may be used to emphasise the

significance of AI in software test automation.

Specifically, the effect of AI on certain activities was

investigated. The SLR was focused on research

studies that discussed the usage of AI techniques in

software test automation for that reason [15]. To

describe the role of artificial intelligence and its

techniques in software test automation, the following

research questions were stated:

What AI techniques can be applied for improving

testing activities identified during answering the

RQ1? .

The data gathered indicates that machine learning

approaches, particularly various kinds of neural

networks, tend to be the most often employed AI

techniques: Bayesian network, artificial neural

network, recurrent neural network, Q-learning, L*,

etc. The Bayesian Network and computer vision

techniques are among those that were applied to

testing activities more frequently than others.

Dr. Subarna Shakya, Dr. S. Smys, they suggested

research to improve software testing accuracy and

dependability and doing research to generate test

cases utilising a hybrid model of differential

evolution and ant colony optimization. Traditional

models like artificial neural networks and particle

swarm optimization are contrasted with the suggested

approach to verify its dependability [18, 19-20]. They

employed three distinct data sets with various

features to make the experimental procedure more

challenging [21, 22].

ID Name Year Method Result Limitations

1

Automation of

software test data

generation using

genetic algorithm and

reinforcement

learning[24]

2021
MAAT

Algorithm

MAAT algorithm has a success rate

of 100%, while none of the other

algorithms can reach more than 80%

in this criterion

It works into test

data generation

only

2

Reliable Automated

Software Testing

Through Hybrid

Optimization

Algorithm[19]

2020
Hybrid ACO

Algorithm

The proposed model hybrid ACO

model attains accuracy range of rate

of 96.2%, but particle swarm

optimization attains an average of

95.5% and artificial neural network

obtains an accuracy of 92% which is

4% lesser than the proposed model

It works into test

data generation

only

3

Automated Software

Test Optimization

using Language

Processing[25]

2019
TLP based

framework

Based on our experiments it is

concluded that (1) Test execution

time using TLP based framework is

significantly low and (2) a test suite

optimization of 83.78% is achieved

through the proposed TLP

framework

It works into test

data generation

only

4

Multiple-

Implementation

Testing of Supervised

Learning

Software[26]

2018

k-Nearest

Neighbor

(kNN) and

Naive Bayes

(NB)

In particular, 19 kNN

implementations detect 13 real errors

and 1 potential fault, while 7 NB

implementations detect 16 real faults.

Among the three widely used open-

source ML projects, our technique

can detect 7 true problems and 1

potential defect

It works into test

data generation

only

5

Artificial Intelligence

in Software Test

Automation: A

Systematic Literature

Review[18]

2020

Systematic

Literature

Review

(SLR)

Most commonly used AI techniques

appears to be from the field of

machine learning, specifically

different types of neural networks:

Artificial Neural Network, Recurrent

Neural Network, Bayesian Network;

Q-learning; L* etc. Bayesian

Network and techniques from the

It works into

survey the AI

techniques

without

experimental

result

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

4

Computer Vision field belong among

the techniques that were used across

more testing activities more

frequently than others

6

Software Testing

Using G Genetic

Algorithm [27]

2016

Genetic

Algorithm

(GA)

As a result, Genetic Algorithms are

being utilized to improve the

efficiency and processing time of

Software testing by providing us with

an automatic test case generator. The

evolutionary creation of test cases

can be used, and it has been shown to

be more efficient and cost effective

than Random Testing.

It works into test

data generation

only

7

Performance analysis

of six meta-heuristic

algorithms over

automated test suite

generation for path

coverage-based

optimization [28]

2019

hill-climbing

algorithm

(HCA),

particle

swarm

optimization

(PSO),

firefly

algorithm

(FA), cuckoo

search

algorithm

(CS), bat

algorithm

(BA) and

artificial bee

colony

algorithm

(ABC)

ABC, BA and PSO were the better

optimal test suite generators, while

CA, HCA and FA produced non-

optimal test suites. On the other

hand, BA, HCA and ABC were the

faster algorithms with similar

processing times for the process

metrics. FA, PSO and CA were

among the slower performing

algorithms. Hence, ABC and BA

present as suitable algorithms for

TSG, while PSO can be improved in

the future for the special case of TSG

It works into test

data generation

and search for

the bugs and

errors

8

Principal component

based support vector

machine (PC-SVM)

[16]

2021

hybrid

strategy that

combined

Principal

component

Analysis

(PCA) and

Support

vector

machines

(SVM)

PC-SVM provided accuracy of 86.6

percent with 86.8% precision, 99.6%

recall, and 92.8 percent F-measure.

Similarly, the accuracy of the CM1

dataset-specific model was 95.2

percent, with 96.1 percent precision,

99 percent recall, and 97.5 percent F-

measure

It works in

search for the

bugs and errors

Table 1. Related works for this study

The accuracy comparison between ANN, PSO and H-

ACO. It is observed that proposed model attains

better accuracy compared to other models. The

proposed model hybrid ACO model attains accuracy

range of rate of 96.2%, but particle swarm

optimization attains an average of 95.5% and

artificial neural network obtains an accuracy of 92%

which is 4% lesser than the proposed model. It is

observed from the figure, that the proposed model

attains better sensitivity and specificity values than

artificial neural network and particle swarm

optimization model.

In the past, numerous studies have used a variety of

techniques to detect software faults, including

artificial neural networks (ANN), deep learning (DL),

linear regression, K-nearest neighbours (KNN),

decision trees, SVM, etc. [23]. According to Gondra,

[24] a machine learning technique using ANN was

developed to measure performance for excessive and

indecisive datasets. To train ANN, historical software

metric values with multiple errors were provided. To

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

5

measure performance, sensitivity analysis was carried

out, and ANN was trained using the training data and

various evaluation criteria.

Prediction of software problems using one method

SVM is utilized in many fields to forecast flaws, but

its accuracy view limits their rate of prediction.

Techniques such as feature selection and optimization

are employed to improve accuracy. Optimization is

carried out using the P-SVM algorithm, a mix of

Particle Swarm Optimisation (PSO) and the SVM

algorithm [25]. By clustering text documents using

the PSO method, a more informative feature selection

technique with lower dimensions can be obtained

[25]. Text clustering is a technique that divides text

into numerous groups, which reduces performance

and lengthens calculation time. Consequently, a

hybrid approach using particle swarm optimization

and genetic operators is applied for the selection of

more informative features [27]. But there is a

limitation of using PSO it easily falls into local

optimization in high-dimensional space it also has a

low convergence rate in the iterative processing it

works for large datasets, but our hybrid model PSO-

ANN will work more effective rather than the P-SVM

hybrid model.

In our paper, we are presenting the novel approach by

combining the two most promising algorithm for

optimization and feature selection to obtain better

results with more accuracy. We are using a hybrid of

PSO-ANN algorithm whose results and accuracy are

more than the below-mentioned algorithm in our

knowledge.

III. PRELIMINARIES

Machine learning is a subfield of artificial

intelligence that empowers computers to learn and

improve from experience without explicit

programming. It involves the development of

algorithms and statistical models that enable systems

to recognize patterns and make data-driven decisions.

One of the core concepts in machine learning is the

use of neural networks, which are inspired by the

functioning of the human brain. These networks

consist of interconnected nodes, or artificial neurons,

organized into layers. Through the process of

training, where the model learns from labelled data,

machine learning algorithms can make predictions,

classify data, and even solve complex problems

across various domains, such as image recognition,

natural language processing, and recommendation

systems [46].

Neural networks as in Fig 2 are a fundamental

component of modern machine learning and artificial

intelligence. They are computational models inspired

by the structure and functioning of the human brain's

neural connections. Each artificial neuron receives

input data, processes it through an activation

function, and produces an output that is passed to the

next layer of neurons. This interconnectedness allows

neural networks to detect patterns and relationships in

data that might be challenging for traditional

algorithms to identify. Neural networks can have

different architectures, including feedforward,

recurrent, and convolutional neural networks, each

suited for specific tasks. The deepening of neural

networks, known as deep learning, has led to

significant advancements in various fields, including

computer vision, speech recognition, and natural

language understanding [47].

Figure. 2. Neural network model

One of the key advantages of using neural networks

in software testing automation is their ability to

handle large and diverse datasets with relative ease.

By training on vast amounts of historical testing data,

neural networks can learn patterns and relationships

that might not be apparent to traditional testing

approaches. This empowers them to identify and

predict potential defects or vulnerabilities more

accurately, enhancing the overall test coverage and

reducing the risk of critical issues slipping through

undetected. Furthermore, neural networks can

significantly speed up the testing process. Their

inherent parallel processing capabilities enable them

to execute multiple test cases simultaneously, thus

accelerating testing cycles and allowing for rapid

feedback on the software's performance. As a result,

software development teams can expedite the release

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

6

cycle without compromising on the quality of the

product. Neural networks also excel in the realm of

anomaly detection. By continuously analyzing

application behavior, they can recognize unusual

patterns and deviations from expected outcomes. This

makes them invaluable in scenarios where traditional

rule-based testing falls short or becomes too

cumbersome to maintain. The ability to detect outliers

and potential bugs early on saves considerable time

and effort for testers, enabling them to focus on more

critical aspects of the software. However, while

neural networks bring immense benefits to software

testing automation, their implementation requires

careful consideration and expertise. Designing and

training a neural network tailored to the specific

testing requirements demands skilled data scientists

and testing professionals working together.

Moreover, neural networks are not a silver bullet;

they should be seen as complementary tools to

traditional testing methodologies, enhancing their

effectiveness rather than replacing them entirely. In

conclusion, neural networks have revolutionized

software testing automation by providing an

intelligent, data-driven approach to identify defects,

speed up testing cycles, and enhance overall test

coverage. With continued research and

advancements, the integration of neural networks into

testing processes will undoubtedly continue to

evolve, enabling software development teams to

deliver high-quality products with greater efficiency

and confidence ss[47].

Deep learning is a subfield of machine learning that

focuses on training artificial neural networks with

multiple layers, enabling the models to learn

hierarchical representations of data. This layered

architecture allows deep learning models to

automatically extract and learn intricate features from

raw input data. Deep learning has revolutionized

various industries due to its ability to handle large

amounts of data efficiently and extract meaningful

insights. Some of the most remarkable achievements

in deep learning include image and object

recognition, machine translation, autonomous

vehicles, and playing complex games like Go.

However, training deep learning models often

requires substantial computational resources, which

has led to the development of specialized hardware

and distributed computing techniques to accelerate

the process. Despite the challenges, deep learning

continues to be at the forefront of cutting-edge AI

research, and its ongoing advancements promise to

shape the future of artificial intelligence and the

technologies we interact with daily [48].

3.1 Artificial Neural Network (ANN)

ANN is a computer method with biological roots that

mimics the behaviour and learning processes of the

human brain [28]. This method relies purely on the

historical input-output dataset (example set) to learn

the relationship between the data through training and

does not explicitly require knowledge of the physical

phenomena under inquiry [29]. An amazing

generalisation capacity, which enables it to properly

anticipate outputs for a fresh input data set, and the

ability to deal with noisy data and uncertainties are

only two of the many benefits that ANN-based

models offer [30].

The ANN technique has been widely applied in

multiple applications in engineering, medicine,

meteorology, economics, psychology, and many other

domains because to their many appealing properties

[31, 32]. As a result, a number of research have

investigated the use of ANNs to the evaluation of

sandwich composite panels [33, 34, 35, 36].

However, studies that attempt to develop a

generalised prediction model that can account for the

influence of each of the honeycomb core's

geometrical parameters—cell wall thickness (t), cell

wall angle (), cell wall length (a), and core

thicknesses (D)—tend to be scarce when it comes to

honeycomb core sandwich composites. The few

experiments reported in the literature [33, 34, 35, 36]

were constrained by the cell geometry modifications

and the geometrical parameters taken into account.

3.2 Particle Swarm Optimization (PSO)

PSO is a particularly promising and effective

optimization technique for solving highly constrained

nonlinear and non-convex optimization problems

[38]. The PSO algorithm was first proposed by

Kennedy and Eberhart [37] and is based on

cooperative behaviour exhibited by species like fish

schools and bird flocks. The locations of points (or

particles) in the design space represent possible

answers to an optimisation issue. In accordance with

both its individual optimal position and the optimal

position of the entire swarm during each generation,

each particle updates its location [39].PSO offers

numerous advantages over other optimisation

approaches, including fewer parameters to tweak than

many of its rivals, quick calculation times, and the

ability to mix different techniques to create hybrid

tools. Additionally, the PSO algorithm's iteration

phase does not depend on the original solution to

begin [40, 41].

The PSO method has been widely employed in many

engineering applications due to its simplicity of use

and quick searching speed [39, 41], including

multiple studies that used PSO in honeycomb

sandwich composite investigations. However, given

the effect that each of these parameters has on the

performance of honeycomb cores, it is surprising that

these studies did not take into account all of the

physical parameters of the honeycomb core [core

thickness (D), cell wall angle (), cell wall thickness

(t), and the cell wall length (a)] in their optimisation

problems.

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

7

The PSO in its original form is defined by:

𝑉𝑖𝑑
𝑡+1 = 𝑤. 𝑣𝑖𝑑

𝑡 + 𝑐1. 𝑟1𝑑
𝑡 𝑃𝑏𝑒𝑠𝑡 ,𝑖

𝑡 − 𝑥𝑖𝑑
𝑡 + 𝑐2. 𝑟2𝑑

𝑡 𝐺𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖𝑑

𝑡 (1)

𝑋𝑖𝑑
𝑡+1 = 𝑋𝑖𝑑

𝑡 + 𝑉𝑖𝑑
𝑡+1, 𝑑 = 1,2, … . . 𝑛(2)

Where:

 𝑣𝑖𝑑
𝑡 : is the velocity vector of the particle 𝑖 in dimension 𝑑 at time 𝑡.

 𝑋𝑖𝑑
𝑡+1: is the position vector of the particle 𝑖 in dimension 𝑑 at time 𝑡+1.

 w∶ is representative of the inertia weight

 𝑃𝑏𝑒𝑠𝑡 ,𝑖
𝑡 : is the personal best position of the particle 𝑖 in dimension 𝑑 found from initialization through time 𝑡.

 𝐺𝑏𝑒𝑠𝑡
𝑡 : is the global best position of the particle 𝑖 in dimension 𝑑 found from initialization through time 𝑡.

 𝑐1, 𝑐2 : are positive acceleration constants which are used to level the contribution of the cognitive and social

components respectively;

 𝑟1𝑑
𝑡 , 𝑟2𝑑

𝑡 : are random numbers from uniform distribution U (0, 1) at time t.

In PSO, the interaction of a group in nature is imitated in the sense that the group members are inclined to move

toward the best member in the group. Hence, the behavior of each member is formed by the personal and social

information as shown in Fig 3.

Figure. 3. PSO procedure

IV. PROPOSED MODEL (ANN-PSO)

The proposed model in Fig 4 is provide performs a

binary classification task using a Particle Swarm

Optimization (PSO) approach to select a subset of

features from the dataset. Here's an explanation of the

code step by step:

1. Importing Libraries: The necessary libraries and

modules are imported, including warnings,

pandas, tensorflow, scikit-learn (sklearn), seaborn,

numpy, matplotlib, and keras.

2. Loading and Preprocessing Data:-

The dataset is loaded from a CSV file using

pandas, and the first five rows of the dataset are

displayed. A LabelEncoder is used to encode the

target variable ('defects') into numeric values and

create a new column. The 'defects' column is

dropped from the dataset, and the resulting

DataFrame is stored in 'df'. The feature matrix

(data_X) and the target variable (data_y) are

extracted from 'df'. The data is split into training

and testing sets using the train_test_split function

from sklearn.

3. Setting Random Seeds: Random seeds are set to

ensure reproducibility of the results.

4. Objective Function Definition: The objective

function 'f_per_particle' is defined, which takes a

binary mask 'm'. The function selects a subset of

features based on the binary mask and performs

classification using a neural network model. The

performance of the model is computed using

accuracy.The objective function value 'j' is

calculated as a weighted combination of

classification performance and the number of

selected features.

5. Higher-Level Objective Function: The higher-

level objective function 'f' is defined, which takes

the entire swarm 'x' and an alpha value as inputs.

The function evaluates the objective function

'f_per_particle' for each particle in the swarm. The

negative objective function values are returned.

6. Particle Swarm Optimization (PSO): PSO

parameters (options) are defined, including

cognitive and social coefficients (c1 and c2),

inertia weight (w), maximum velocity (k), and p-

value. The PSO optimizer is initialized with the

defined parameters and the number of dimensions

(number of features). PSO algorithm is executed

for a specified number of iterations, optimizing

the objective function 'f'. The best cost and the

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

8

best position (binary mask) obtained from the

optimization are returned.

7. Selecting Features and Training the Final Model:

The selected features for training and testing are

obtained by applying the best position (binary

mask) to the training and testing sets. A neural

network model is defined and compiled using the

selected features as input. The model is trained on

the training set for a specified number of epochs.

Predictions are made on the selected features of

the testing set. The performance of the model on

the testing set is computed and printed.

Figure. 4. Proposed Methodology flowchart

V. EXPERIMENTAL SETUP

5.1 Dataset Description

The PROMISE datasets repository was used to

collect the data [26]. The proposed approach was put

into practise using the CM1 [42], PC1 [43], KC2 [45]

and KC1 [44] datasets. We have listed descriptions of

the various attributes used for analysis in Table 2.

Additionally, we divided the two datasets into two

separate portions, one for training the model and the

other for assessing the results. 240 observations from

the CM1 data were used to train the model, and 104

observations were used to test the model. The model

was trained using 1476 observations, just like in KC1,

and tested with 633 records and 776 observations

from the PC1 data were used to train the model, and

333 observations were used to test the model.

5.2 Parameter Settings

Five hundred repetitions qualified the examined and

tested models. The input sheet for ANN is based on

No. Since the beneficial procedure was used, there

were thousands of concealed nodes. It required more

hidden nodes than conventional algorithms did. The

2-class was introduced by a single output layer node.

The Particle Swarm Optimisation technique was

developed to optimise hyperparameters like (number

of estimators, max depth, etc.) (the number of

iterations......... 10 iterations were used) as shown in

table 3.

5.3 Evaluation criteria

We used a confusion matrix to assess the outcomes.

A simple classification of predicted and actual values

using the confusion matrix serves as a convincing

example of the same. After receiving the values, we

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

9

perform additional calculations, such as model

correctness, precision, F-score. For each dataset, three

confusion matrices were produced. A representation

of actual value and predictions based on testing

datasets is called a confusion matrix. The confusion

matrix controls the model's accuracy, and it is also

possible to calculate some other performance

parameters (such as recall and precision).

Attribute name Description of attribute

LOC Counts the total number of line in the module

Iv(g) Design complexity analysis (McCabe)

Ev(g) McCabe essential complexity

N Number of operators present in the software module

v(g) Cyclomatic complexity measurement (McCabe)

D Measurement difficulty

B Estimation of effort

L Program length

V Volume

I Intelligence in measurement

E Measurement effort

Locomment Line of comments in software module

Loblank Total number of blank lines in the module

uniq_op Total number of unique operators

uniq_opnd Total number of unique operand

T Time estimator

Branchcount Total number of branch in the software module

total_op Total number of operators

Total_opnd Total number of operators

Locodeandcomment Total number of line of code and comments

Defects/Problems
Information regarding defect whether the defect is

present or not

Table 2. Attributes description of PROMISE dataset

Model Parameter Values

ANN

Input nodes based on No. Features

Activation fun for output nodes sigmoid

Output nodes 1

No. of Iterations 100

PSO

Number of particles 50

Number of iterations 100

Dimension Number of features (21)

α in fitness function 0.88

β in fitness function 0.01

Options
{‗c1‘:0.5, ‗c2‘: 0.5, ‗w‘: 0.9, ‗K‘:

30, ‗p‘: 2}

Table 3. Parameters Settings

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

10

The accuracy of the model can be calculated from the

following formula.

The precision of the model can be calculated using

the following formula

Recall of the model calculated using correctly

predicted positive observations and total numbers of

positive models in testing datasets.

Finally, F-measure is computed from the following

formula.

Confusion matrix as shown in Fig 5:

Figure. 5. Confusion matrix of classification rules

VI. RESULT AND DISCUSSION

In this section, we will present the comparison

between the classification algorithms and artificial

neural network and Convolutional Neural Network

based on the paper in related work with the

PROMOSE dataset and apply each algorithm on

dataset (PC1, CM1, KC1) .

After reading the dataset, presumably containing both

features and the target variable and Create a feature

matrix (input features) and a target variable array

(output labels) required for machine learning then

Split Data into Train and Test Sets and Apply the

PSO and return the best position then select features

and train final model and Select features based on the

best position obtained from PSO, define and compile

a neural network model, train the model using

selected features, make predictions on the test set,

compute model performance on the test set and Print

test performance.

In table 4, 5, 6. After the implementation of the

Classification models and proposed model, we

compared our model with previous studies based on

precision, recall, F-measure, and accuracy of

classification. We have found that the PSO-ANN is

more accurate than the other. In KC1 dataset analysis,

in Fig [6, 7, 8, 9] we have found precision 0.94, recall

0.90, F-measure 0.95, and accuracy 86.00 that is a

significant improvement in the analysis in the table 6.

Same as in CM1 dataset analysis, we have found

precision 90.0, recall 1.0, F-measure 95.0, and

accuracy 90.88. In the table 4. Same as in PC1 dataset

analysis, we have found precision 95.0, recall 1.0, F-

measure 95.0, and accuracy 94.00. In the table 5. The

accuracy of training data in Fig 10 and test data in Fig

11.

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

11

CM1

Train Dataset Test Dataset

Acc F1s Pre Rec Acc F1s Pre Rec

1 LogisticRegression 89.37 0.94 0.91 0.98 89.00 0.95 0.91 0.97

2 KNeighborsClassifier 89.95 0.95 0.91 0.99 89.67 0.95 0.91 0.97

3 DecisionTreeClassifier 84.49 0.91 0.92 0.91 82.00 0.90 0.90 0.90

4 RandomForestClassifier 89.66 0.95 0.90 0.99 89.33 0.94 0.90 0.97

5 GradientBoostingClassifier 88.22 0.94 0.91 0.96 87.33 0.93 0.90 0.96

6 AdaBoostClassifier 85.93 0.93 0.90 0.95 86.00 0.92 0.90 0.95

7 LinearDiscriminantAnalysis 88.23 0.94 0.92 0.95 87.33 0.93 0.90 0.97

8 QuadraticDiscriminantAnalysis 53.47 0.68 0.90 0.54 89.67 0.95 0.91 0.97

9 GaussianNB 52.64 0.66 0.94 0.51 86.67 0.93 0.91 0.94

10 SVC(Linear) 90.23 0.95 0.90 1.00 89.00 0.95 0.90 0.97

11 SVC(probability = true) 89.95 0.95 0.90 1.00 89.00 0.95 0.90 0.97

12 SVC(poly) 88.80 0.94 0.91 0.99 89.00 0.95 0.91 0.97

13 SVC(sigmoid) 89.95 0.95 0.92 0.97 89.00 0.95 0.90 0.97

14 PC-SVM 89.95 0.95 0.92 0.97 90.00 0.95 0.90 0.97

15 Proposed Model (PSO-ANN) 98.95 0.98 0.96 0.97 91.00 0.98 0.95 0.99

Table 4. Classification algorithms and proposed model with CM1 dataset

PC1

Train Dataset Test Dataset

Acc F1s Pre Rec Acc F1s Pre Rec

1 LogisticRegression 92.66 0.96 0.94 0.99 92.79 0.96 0.94 0.95

2 KNeighborsClassifier 92.66 0.96 0.94 0.98 92.39 0.97 0.94 0.97

3 DecisionTreeClassifier 90.08 0.95 0.95 0.94 90.69 0.95 0.95 0.96

4 RandomForestClassifier 92.91 0.96 0.93 0.99 92.39 0.97 0.94 0.97

5 GradientBoostingClassifier 92.40 0.96 0.94 0.98 91.59 0.96 0.95 0.96

6 AdaBoostClassifier 92.53 0.96 0.94 0.98 92.29 0.97 0.96 0.98

7 LinearDiscriminantAnalysis 92.14 0.96 0.94 0.98 89.79 0.95 0.94 0.95

8 QuadraticDiscriminantAnalysis 37.65 0.51 0.94 0.35 92.99 0.97 0.94 0.97

9 GaussianNB 89.05 0.94 0.95 0.93 83.78 0.91 0.95 0.87

10 SVC(Linear) 92.78 0.96 0.93 1.00 92.99 0.97 0.94 0.97

11 SVC (probability = true) 93.30 0.97 0.93 1.00 92.99 0.97 0.94 0.97

12 SVC (poly) 92.91 0.96 0.94 0.94 92.79 0.96 0.94 0.98

13 SVC (sigmoid) 90.47 0.95 0.93 0.97 92.29 0.97 0.94 0.97

14 PC-SVM 89.95 0.95 0.92 0.97 93.00 0.95 0.90 0.95

15 Proposed Model (PSO-ANN) 97.90 0.98 0.96 0.97 94.00 0.99 0.98 1.00

Table 5. Classification algorithms with PC1 dataset

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

12

KC1

Train Dataset Test Dataset

Acc F1s Pre Rec Acc F1s Pre Rec

1 LogisticRegression 86.86 0.93 0.88 0.98 83.25 0.91 0.85 0.97

2 KNeighborsClassifier 85.64 0.92 0.89 0.96 81.52 0.90 0.84 0.96

3 DecisionTreeClassifier 84.01 0.91 0.90 0.91 75.99 0.86 0.85 0.86

4 RandomForestClassifier 86.58 0.93 0.88 0.98 82.46 0.90 0.84 0.97

5 GradientBoostingClassifier 87.19 0.93 0.89 0.97 81.67 0.90 0.85 0.94

6 AdaBoostClassifier 85.84 0.92 0.88 0.97 82.15 0.90 0.85 0.95

7 LinearDiscriminantAnalysis 86.38 0.92 0.89 0.96 81.36 0.89 0.85 0.94

8 QuadraticDiscriminantAnalysis 33.14 0.38 0.91 0.24 82.62 0.85 0.85 0.90

9 GaussianNB 83.20 0.90 0.90 0.91 81.20 0.89 0.87 0.91

10 SVC(Linear) 86.04 0.92 0.86 0.99 82.78 0.91 0.83 0.99

11 SVC (probability = true) 86.92 0.93 0.87 0.99 82.62 0.90 0.84 0.97

12 SVC (poly) 86.59 0.93 0.87 0.99 83.41 0.91 0.85 0.97

13 SVC (sigmoid) 79.74 0.88 0.88 0.89 78.20 0.87 0.85 0.90

14 PC-SVM 89.95 0.95 0.92 0.97 84.45 0.86 0.86 0.95

15 Proposed Model (PSO-ANN) 97.90 0.98 0.96 0.97 86.00 0.95 0.90 0.99

Table 6. Classification algorithms with KC1 dataset

Figure. 6. Recall for CM1, PC1 and KC1 dataset

Figure. 7F-M for CM1, PC1 and KC1 dataset

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

13

Accuracy

Figure. 8. Accuracy for CM1, PC1 and KC1 dataset

Precision

Figure. 9. Precision for CM1, PC1 and KC1 dataset

Figure. 10 accuracies of algorithms with training dataset

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

14

Figure. 11 accuracies of algorithms with test dataset

VII. CONCLUSION

The ability to detect faults accurately and early on is a

key factor in determining a software's quality.

Software defects can be found early on using a

variety of methods that researchers and scientists

have previously devised. The most effective approach

is machine learning-based due to the classifiers'

learning mechanisms. We have examined the

performance of the ANN-PSO model implemented on

the PROMISE dataset repository by using previously

developed conventional and traditional methods.

We select ANN-PSO to overcome the problem of the

curse of dimensionality and reduce the computational

requirements of the proposed task. It was the major

problem with the previous research methodology

mentioned then after we used PSO-ANN with multi-

layer, which is a very powerful methodology of

classification in ML. We have found PSO-ANN more

sustainable in terms of many cases like it can give

better result with small datasets and doesn‘t affect by

outliers.

Some improvements on used models will be added by

using metaheuristic optimization and classification

algorithms to find the best solution.

REFERENCE

[1] Hussam Hourani, Ahmad Hammad, Mohammad Lafi, ―The

Impact of Artificial Intelligence on Software Testing‖, 2019

IEEE Jordan International Joint Conference on Electrical

Engineering and Information Technology (JEEIT).

[2] Mark Last, Menahem Friedman, Abraham Kandel, ―The Data

Mining Approach to Automated Software Testing‖, August

24-27, 2003, Washington, DC, USA.

[3] Ms.Karuturi Sneha, Mr. Malle Gowda M, ―Research on

Software Testing Techniques and Software Automation

Testing Tools‖. International Conference on Energy,

Communication, Data Analytics and Soft Computing

(ICECDS-2017).

[4] Jihyun Lee, Sungwon Kang, and Danhyung Lee, ―A Survey

on Software Testing Practices‖, All content following this

page was uploaded by Sungwon Kang. 15 January 2015.

[5] Sumit Mahapatra and Subhankar Mishra, ―Usage of Machine

Learning in Software Testing‖. July 11, 2020.

[6] Lionel C. Briand. Novel applications of machine learning in

software testing. Quality Software, International Conference

on, 0:3–10, 2008.

[7] Du Zhang and Jeffrey Tsai. Machine learning and software

engineering. Software Quality Journal, 11:87–119, 2003.

10.1023/A:1023760326768.

[8] Huang, T. M., Kecman, V., & Kopriva, I. (2006). Kernel

based algorithms for mining huge data sets (Vol. 1).

Heidelberg: Springer.

[9] Mikolov, T., Karafiát, M., Burget, L., Černocký, J., &

Khudanpur, S. (2010). Recurrent neural network based

language model. In 11th annual conf. of the international

speech communication association.

International Journal of Advanced Computational Engineering and Networking, ISSN(p): 2320-2106, ISSN(e): 2321-2063

Volume-12, Issue-1, Jan.-2024, http://iraj.in

Software Testing Automation Using Machine Learning Techniques

15

[10] Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt

Publ. Ltd.

[11] Mustafa, Mohamed, Abdullah, ―A Survey on Software

Testing Automation using Machine Learning Techniques‖,

International Journal of Computer Applications, February

2022.

[12] Cohen-Almagor, R.: Internet history. Int. J. Technoethics 2,

45–64 (2011).

[13] Naughton, J.: The evolution of the Internet: from military

experiment to general purpose technology. J. Cyber Policy

1(1), 5–28 (2016).

[14] Mohd. Mustaqeem, Mohd. Saqib, ―Principal component

based support vector machine (PC-SVM): a hybrid technique

for software defect detection‖, part of Springer Nature 2021,

Published online: 16 April 2021.

[15] Anna Trudova, Michal Dolezel, ‖Artificial Intelligence in

Software Test Automation: A Systematic Literature Review‖,

2020.

[16] Gondra, I.: Applying machine learning to software fault-

proneness prediction. J. Syst. Softw. 81(2), 186–195 (2008).

[17] Yang, B., Li, X: A study on software reliability prediction

based on support vector machines (2008).

[18] Dr. Subarna Shakya,Dr. S. Smys, ―Reliable Automated

Software Testing Through Hybrid Optimization

Algorithm‖.Journal of Ubiquitous Computing and

Communication Technologies (UCCT) (2020).

[19] Ajmer Singh, Rajesh Bhatia, Anita Singhrova (2018).

Taxonomy of machine learning algorithms in software fault

prediction using object-oriented metrics. Procedia Computer

Science. 132. 993-1001.

[20] Alireza Haghighatkhah, Ahmad Banijamali, Olli-Pekka

Pakanen, Markku Oivo, Pasi Kuvaja (2017). Automotive

software engineering: A systematic mapping study. Journal of

Systems and Software. 128, 25-55.

[21] Amir Elmishali, Roni Stern, Meir Kalech (2018). An

Artificial Intelligence paradigm for troubleshooting software

bugs. Engineering Applications of Artificial Intelligence. 69,

147-156.

[22] Fuqun Huang, Bin Liu (2017). Software defect prevention

based on human error theories. Chinese Journal of

Aeronautics. 30(3):1054-1070.

[23] Gondra, I.: Applying machine learning to software fault-

proneness prediction. J. Syst. Softw. 81(2), 186–195 (2008).

[24] Can, H., Jianchun, X., Ruide, Z., Juelong, L., Qiliang, Y.,

Liqiang, X.: A new model for software defect prediction

using Particle Swarm Optimization and support vector

machine, In: Proceedings of the 2013 25th Chinese Control

and Decision Conference (CCDC), pp. 4106–4110 (2013).

[25] Espejo, P.G., Ventura, S., Herrera, F.: A survey on the

application of genetic programming to classification. IEEE

Trans. Syst. Man Cybern Part C 40(2), 121–144 (2010).

[26] ayyad Shirabad, J., Menzies, T.J.: The {PROMISE}

Repository of Software Engineering Databases (2005).

[27] Williams, L.J.: Principal component analysis, pp. 433–459

(2010).

[28] Pandey, D.S.; Das, S.; Pan, I.; Leahy, J.J.; Kwapinski, W.:

Artificial neural network based modelling approach for

municipal solid waste gasification in a fluidized bed reactor.

Waste Manag. 58, 202–213 (2016).

[29] Azizi, S.; Awad, M.M.; Ahmadloo, E.: Prediction of water

holdup in vertical and inclined oil–water two-phase flow

using artificial neural network. Int. J. Multiph. Flow 80, 181–

187 (2016.

[30] Baughman, D.R.; Liu, Y.A.: Neural Networks in

Bioprocessing and Chemical Engineering. Academic press,

New York, USA (1995).

[31] Kumar, R.; Aggarwal, R.K.; Sharma, J.D.: Comparison of

regression and artificial neural network models for estimation

of global solar radiations. Renew. Sustain. Energy Rev. 52,

1294–1299 (2015).

[32] Kan, C.W.; Song, L.J.: An artificial neural network model for

prediction of colour properties of knitted fabrics induced by

laser engraving. Neural Process. Lett. 44, 639–650 (2016).

[33] Lanzi, L.; Bisagni, C.; Ricci, S.: Neural network systems to

reproduce crash behavior of structural components. Comput.

Struct. 82(1), 93–108 (2004).

[34] Li, J.; Chen, X.; Wang, H.: Comparison of artificial neural

networks with response surface models in characterizing the

impact damage resistance of sandwich airframe structures.

2009 Second Int. Symp. Comput. Intell. Des. 2, 210–215

(2009).

[35] Sun, G.; Li, G.; Stone, M.; Li, Q.: A two-stage multi-fidelity

optimization procedure for honeycomb-type cellular

materials. Comput. Mater. Sci. 49(3), 500–511 (2010).

[36] Esfahlani, S.S.; Shirvani, H.; Shirvani, A.; Nwaubani, S.;

Mebrahtu, H.; Chirwa, C.: Hexagonal honeycomb cell

optimisation by way of meta-model techniques. Int. J.

Crashworthiness 18(3), 264–275 (2013)

[37] Kennedy, J.; Eberhart, R.: Particle swarm optimization. IEEE

Int. Conf. Neural Netw. (ICNN) 4, 1942–1948 (1995)

[38] Assarzadeh, Z.; Naghsh-Nilchi, A.R.: Chaotic particle swarm

optimization with mutation for classification. J. Med. Signals

Sens 5(1), 12–20 (2015)

[39] Tao, W.; Liu, Z.; Zhu, P.; Zhu, C.; Chen, W.: Multi-scale

design of three dimensional woven composite automobile

fender using modified particle swarm optimization algorithm.

Compos. Struct. 181, 73–83 (2017)

[40] AlRashidi, M.R.; El-Hawary, M.E.: A survey of particle

swarm optimization applications in electric power systems.

IEEE Trans. Evol. Comput. 13(4), 913–918 (2009)

[41] Hasanien, H.M.: Particle swarm design optimization of

transverse flux linear motor for weight reduction and

improvement of thrust force. IEEE Trans. Industr.

Electron. 58(9), 4048–4056 (2010).

[42] CM1 Dataset, 2023, Available:

http://promise.site.uottawa.ca/SERepository/datasets/cm1.arff

[43] PC1 Dataset, 2023, Available:

http://promise.site.uottawa.ca/SERepository/datasets/pc1.arff

[44] KC1 Dataset, 2023, Available:

http://promise.site.uottawa.ca/SERepository/datasets/kc1.arff

[45] KC2 Dataset, 2023, Available:

http://promise.site.uottawa.ca/SERepository/datasets/kc2.arff

[46] Pedro Domingos, A Few Useful Things to Know About

Machine Learning, CommuniCAtionS oF thE ACm (2021)

[47] Geoffrey E. Hinton, S.O, Yee-Whye The, A Fast Learning

Algorithm for Deep Belief Nets, Neural Computation, Vol.

18, No. 7, Pages 1527-1554 (2006)

[48] Yann LeCun, Y.B, G.H, Deep Learning, Nature, Vol. 521,

Pages 436-444(2015)



http://promise.site.uottawa.ca/SERepository/datasets/kc2.arff

